Hankel Operators between Hardy-orlicz Spaces and Products of Holomorphic Functions

نویسنده

  • ALINE BONAMI
چکیده

For Bn the unit ball of Cn, we consider Hardy-Orlicz spaces of holomorphic functions H, which are preduals of spaces of BMOA type with weight. We characterize the symbols of Hankel operators that extend into bounded operators from the Hardy-Orlicz H1 into H2 . We also consider the closely related question of integrability properties of the product of two functions, one in H1 and the other one in the dual of H2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators and Weak Factorization for Hardy-orlicz Spaces

We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...

متن کامل

p-Carleson Measures for a Class of Hardy-Orlicz Spaces

An alternative interpretation of a family of weighted Carleson measures is used to characterize p-Carleson measures for a class of Hardy-Orlicz spaces admitting a nice weak factorization. As an application, we provide with a characterization of symbols of bounded weighted composition operators and Cesàro-type integral operators from these Hardy-Orlicz spaces to some classical holomorphic functi...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Weighted Bmo and Hankel Operators between Bergman Spaces

We introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of C and use them to characterize complex functions f such that the big Hankel operators Hf and Hf̄ are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function f is holomorphic, we char...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009